Some recent works on conformally invariant fully nonlinear elliptic equations

Yanyan Li

Rutgers University

Jan. 30, 2020. One World PDE Seminar

- Part I. σ_k -Nirenberg Problem
- Part II. σ_k -Loewner-Nirenberg problem
- Part III. Fully nonlinear equations invariant under Möbius transformations in two dimension

• The Nirenberg problem

Which function K on the standard 2-sphere (S^2, g) is the Gauss curvature of a metric conformally equivalent g?

• PDE:
$$(g_u = e^{u/2}g)$$

 $-\Delta_g u + 2 = 2Ke^u$, on S^2 .

•On (S^n, g) , $n \ge 3$, "scalar curvature" instead of "Gauss curvature".

•PDE:
$$(g_u = u^{\frac{4}{n-2}}g)$$

 $-\Delta_g u + \frac{(n-2)n}{4}u = \frac{n-2}{4(n-1)}Ku^{\frac{n+2}{n-2}}, \quad u > 0, \text{ on } S^n.$

• Necessary condition : K > 0 somewhere.

- A crucial ingredient: Analysis of blow up solutions
- One point blow up: n = 2, Alice Chang and Paul Yang; n = 3, Bahri and Coron, Schoen and D. Zhang; $n \ge 4$, L., under flatness order $\beta \in (n - 2, n)$.
- More than one point blow up occurs in dimension $n \ge 4$: L.
- Infinite energy blow up occurs in dimension $n \ge 7$: C.C. Chen and C.S. Lin

- σ_k -Nirenberg Problem
- " σ_k -curvature" instead of "scalar curvature".
- Schouten tensor: ((M,g) Riemannian manifold)

$$A_g = (n-2)^{-1} (Ric_g - [2(n-1)]^{-1} R_g g),$$

Let

$$\lambda(A_g) = (\lambda_1, \cdots, \lambda_n) =$$
eigenvalues of A_g .

Then

$$\lambda_1(A_g) + \cdots + \lambda_n(A_g) = \underset{\blacksquare}{R_g}.$$

•
$$\sigma_k$$
-curvature: $\sigma_k(A_g) = \sum_{1 \le i_1 < \cdots < i_k \le n} \lambda_{i_1} \cdots \lambda_{i_k}$

• PDE:

$$\sigma_k(A_{g_u}) = K$$
, on S^n .

• Many works on such type equations: Viaclovsky, Chang-Gursky-Yang,.....

Let

$$\mathcal{A} = \{ K \in C^2(S^4) \mid K > 0, |\nabla K| + |\Delta K| > 0 \text{ on } S^4 \}.$$

: There exists a (unique) continuous integer-valued function

Fact: There exists a (unique) continuous integer-valued function (so locally constant) Index : $\mathcal{A} \to Z$

satisfying, for any $K \in \mathcal{A}$ having only isolated critical points,

$$\operatorname{Index}(K) = -1 + \sum_{\bar{x} \in S^4, \nabla K(\bar{x}) = 0, \Delta K(\bar{x}) < 0} \underbrace{\operatorname{index}_{\nabla K}(\bar{x})}_{(-1)}$$

• Theorem A (Alice Chang, Zheng-Chao Han, Paul Yang, 2011): For any $K \in \mathcal{A}$ satisfying $Index(K) \neq 0$, there is at least one $\mathcal{C}^3(S^4)$ solution to

$$\sigma_2\left(A_{g_u}
ight)=K, \quad ext{on } S^4.$$

For
$$n \ge 3$$
, Let

$$\mathcal{A} = \{K \in C^2(S^n) \mid K > 0, |\nabla K| + |\Delta K| > 0 \text{ on } S^n\}.$$
Fact: There exists a (unique) continuous integer-valued function
(so locally constant)
Index : $\mathcal{A} \to Z$
satisfying, for any $K \in \mathcal{A}$ having only isolated critical points,
Index $(K) = -1 + (-1)^n \sum_{\bar{x} \in S^n, \nabla K(\bar{x}) = 0, \Delta K(\bar{x}) < 0} \text{ index}_{\nabla K}(\bar{x}).$

• Theorem 1 (L., Luc Nguyen, Bo Wang, in preparation): Let $n \ge 3$, $\frac{n}{2} \le k \le n$. Then for any $K \in \mathcal{A}$ satisfying Index(K) $\ne 0$, there is at least one $C^3(S^n)$ solution to $\sigma_k(A_{g_u}) = K$, on S^n .

Moreover, the total degree of all solutions is equal to Index(K).

- A crucial ingredient: Analysis of blow up solutions
- For simplicity, assume $k = \frac{n}{2}$.
- Let $\{u_i\}$ be a sequence of solutions with

$$u_i(P_i) = \max_{S^n} u_i \to \infty.$$

• By L. and Nguyen, 2014 JFA,

$$u_{i}(x) \leq Cdist(x, P_{i})^{\frac{2-n}{2}}, \quad x \in S^{n} \setminus \{P_{i}\},$$

$$\lim_{i \to \infty} \int_{S^{n} \setminus B_{\delta}(P_{i})} u_{i}^{\frac{2n}{n-2}} = 0, \quad \forall \ \delta > 0.$$

$$\max_{S^{n} \setminus B_{\delta}(P_{i})} u_{i} \leq C(\delta) \min_{S^{n} \setminus B_{\delta}(P_{i})} u_{i}, \quad \forall \ r > 0,$$
and for some $\delta_{i} \to 0^{+},$

$$\min_{S^{n}} u_{i} \leq u_{i}(P_{i})^{-1+\delta_{i}}.$$

 $\min_{S^n} u_i \leq C u_i (P_i)^{-1}.$

• We establish:

• Let $\varphi_i : S^n \to S^n$ be an appropriate conformal diffeomorphism, (having $\pm P_i$ as fixed points), such that: -Pi $\varphi_i(\partial B_{u_i(P_i)^{-\frac{2}{n-2}}}(P_i)) = \text{the equator.}$ • $\tilde{u}_i := (u_i \circ \varphi_i) |\det d\varphi_i|^{\frac{n-2}{2n}}$ satisfies $\tilde{u}_i(P_i) = 1$ u:(p:) $(1 = u_i(P_i) |\det d\varphi_i(P_i)|^{\frac{n-2}{2n}}).$ So $\tilde{u}_i(-P_i) \sim u_i(-P_i) |\det d\varphi_i(-P_i)|^{\frac{n-2}{2n}} = u_i(-P_i)u_i(P_i).$ • We establish: For some $\delta > 0$, $\sup_{B_{\delta}(-P_i)} \tilde{u}_i \leq C(\delta)$.

- Two proofs for this.
- $A^{u} = w \nabla^{2} w \frac{1}{z} |\nabla w|^{2} I$ $w = u^{-\frac{2}{n-2}}$ • First proof makes use of the following

Proposition 1. Let $B_1 \subset R^n$, $n \ge 3$, $0 < u \in C_{loc}(R^n \setminus B_1)$ satisfies

$$A(A^{u})$$
 is not in $\overline{\Gamma}_{n/2}$ or $\sigma_{n/2}(A^{u}) < 1$, in $R^{n} \setminus B_{1}$,

and

$$\limsup_{|x|\to\infty} |x|^{n-2}u(x) < \infty.$$

Assume for $C_0 > 0$, $\alpha \in (0, 1]$,

$$u(x) \leq C_0 |x|^{\frac{2-n}{2}(1+lpha)}$$
 in $R^n \setminus B_1$,

then

$$u(x) \leq C_1(n, C_0, \alpha) |x|^{2-n}$$
 in $\mathbb{R}^n \setminus B_1$.

Second Proof: **Proposition 2.** Let $n \ge 3$ even, k = n/2, there exists $\delta = \delta(n) > 0$ such that if $0 < u \in C^2(B_2)$ satisfies

- For n = 4, k = 2, the above was proved by Zheng-Chao Han 2004.
- For $k < \frac{n}{2}$, a stronger version in a punctured ball was proved by Maria del Mar Gonzalez 2006.

Part II σ_k -Loewner-Nirenberg problem

• The Loewner-Nirenberg problem

Moreover

 $= u \frac{\pi}{2} g$ Theorem B. (Loewner, Nirenberg): Let $\Omega \subset R^n$ be bounded smooth open set, $n \ge 3$. There exists a unique smooth positive solution to

$$\Delta u = u^{\frac{n+2}{n-2}}, \text{ in } \Omega,$$

$$u(x) \to \infty \text{ as } x \to \partial \Omega.$$

$$\lim_{x \to \partial \Omega} dist(x, \partial \Omega)^{\frac{n-2}{2}} u(x) = c(n) > 0.$$

Theorem 2. (Gonzalez, L., Nguyen, 2018): Let $\Omega \subset \mathbb{R}^n$ be bounded smooth open set, $n \ge 3$, $2 \le k \le n$. There exists a unique positive viscosity solution to

$$\sigma_k(-A^u)=1, \text{ in } \Omega,$$

$$u(x) \to \infty$$
 as $x \to \partial \Omega$.

Moreover $u \in C^{0,1}_{loc}(\Omega)$, and

$$\lim_{x\to\partial\Omega} dist(x,\partial\Omega)^{\frac{n-2}{2}}u(x)=c(n,k)>0.$$

• Chang, Han, Yang, 2005 proved that the problem has no radially symmetric C^2 solution on any annulus.

• A combination of the two results imply that there is no C^2 solution on any annulus.

Theorem 3. (L. and Nguyen, 2020) Let $\Omega = \{a < |x| < b\}$ be an annulus, $n \ge 3, 2 \le k \le n$. Then the solution of the σ_k -Loewner-Nirenberg problem is radially symmetric, (i) u is C^{∞} in each of $\{a < |x| < \sqrt{ab}\}$ and $\{\sqrt{ab} < |x| < b\}$, (ii) u is $C^{1,\frac{1}{k}}$ but not $C^{1,\gamma}$ with $\gamma > \frac{1}{k}$ in each of $\{a < |x| < \sqrt{ab}\}$ and $\{\sqrt{ab} < |x| < b\}$, (iii) and $\partial_r u$ jumps across $\{|x| = \sqrt{ab}\}$. Theorem 4. (L. and Nguyen, 2020) Let $\Omega \subset \mathbb{R}^n$ be bounded open, $n \geq 3$. Then there is no positive $u \in C^2(\Omega)$ such that $\lambda(-A^u) \in \overline{\Gamma}_2$ in Ω and that $(\Omega, u^{\frac{4}{n-2}}g_{f|at})$ admits a smooth minimal immersion $f: \Sigma^{n-1} \to \Omega$ for some smooth compact manifold Σ^{n-1} Corollary Let Ω be an annulus in \mathbb{R}^n , $n \geq 3$ Then there is no radially symmetric positive $u \in C^2(\Omega)$ such that $\lambda(-A^u) \in \overline{\Gamma}_2$ in Ω and $u(x) \to \infty$ as $x \to \partial \Omega$.

The proof is based on Lemma Let $\Omega \subset \mathbb{R}^n$ be open, $n \ge 3$, $\Sigma^{n-1} \subset \Omega$ smooth. If $u \in C^2(\Omega)$ satisfies $\lambda(-A^u) \in \overline{\Gamma}_2$ in Ω , then

$$\Delta_{\Sigma} u + \frac{n-2}{4(n-1)} |H_{\Sigma,u}|^2 u^{\frac{n+2}{n-2}} - \frac{n-2}{4(n-1)} |H_{\Sigma}|^2 u - \frac{1}{(n-2)u} |\nabla_{\Sigma} u|^2 \ge 0 \text{ on } \Sigma.$$

Theorem 5 (L., Luc Nguyen, Jingang Xiong, in preparation). Let $\Omega \subset \mathbb{R}^n$ be bounded, connected, smooth open, $n \geq 3$. Assume $\partial\Omega$ has more than one connected component. Then, for any $2 \leq k \leq n$, the σ_k -Loewner-Nirenberg problem has no $C^2(\Omega)$ solution.

Question: $Jf R^n$ strictly convex bounded is the solution to the Op-Loewner-Nirenberg problem always C²?

~

Part III Fully nonlinear equations invariant under Möbius transformations in two dimension

• Define

$$\int A^{u} := -e^{-u} \nabla^{2} u + \frac{1}{2} e^{-u} du \otimes du - \frac{1}{4} e^{-u} |\nabla u|^{2} I.$$

For a function u, and for a Möbius transformation ψ , denote:

$$u_{\psi} := u \circ \psi + \ln |J_{\psi}|.$$

• $H \in C^0(R^2 \times R \times R^2 \times S^{2 \times 2})$ is invariant under Möbius transformations, i.e.,

$$H(\cdot, u_{\psi}, \nabla u_{\psi}, \nabla^2 u_{\psi}) = H(\cdot, u, \nabla u, \nabla^2 u) \circ \psi \text{ for all } u \text{ and } \psi,$$

if and only if

$$H(\cdot, u, \nabla u, \nabla^2 u) \equiv F(A^u)$$

for some $F \in C^0(\mathcal{S}^{2 imes 2})$ which is invariant under orthogonal conjugation. F(M) = f()(M))

Let Γ be open convex symmetric cone in \mathbb{R}^2 with vertex at the origin satisfying $\Gamma_2 \subset \Gamma \subsetneq \Gamma_1$, where
$$\begin{split} & \Gamma_1 := \{\lambda_1 + \lambda_2 > 0\}, \quad \Gamma_2 = \{\lambda_1, \lambda_2 > 0\}, \\ & \text{Let } f \in C^1(\Gamma) \text{ satisfy } \partial_{\lambda_i} f > 0 \text{ in } \Gamma, i = 1, 2. \end{split}$$
Theorem 6 (L., Han Lu, Siyuan Lu). Let (f, Γ) be as above. Assume $u \in C^2(\mathbb{R}^2)$ satisfies $f(\lambda(A^u)) = 1, \text{ in } R^2,$ where $\lambda(A^u)$ denotes the eigenvalues of A^u . Then $ightarrow u(x) = 2 \ln \frac{8a}{8|x - x_0|^2 + b},$ for some $x_0 \in R^2$ and some positive constants *a* and *b* satisfying $(b/(2a^2), b/(2a^2)) \in \Gamma$ and $f(b/(2a^2), b/(2a^2)) = 1$. assumption on a at us need • C. Li and W. Chen 1991 proved: Let $u \in C^2(\mathbb{R}^2)$ satisfy

$$-\Delta u = e^u$$
, in R^2 ,

and

$$\int_{R^2} e^u < \infty.$$

Then

$$u(x) = 2 \ln \frac{8a}{8|x - x_0|^2 + a^2},$$

for some $x_0 \in R^2$ and some positive constant a.

- This corresponds to $\Gamma = \Gamma_1$ and $f(\lambda_1, \lambda_2) = \lambda_1 + \lambda_2$.
- In this case, condition $\int_{R^2} e^u < \infty$ can not be dropped.

THANK YOU!