Some recent works on conformally invariant fully nonlinear elliptic equations

Yanyan Li

Rutgers University

Jan. 30, 2020. One World PDE Seminar

- Part I. σ_{k}-Nirenberg Problem
- Part II. σ_{k}-Loewner-Nirenberg problem
- Part III. Fully nonlinear equations invariant under Möbius transformations in two dimension
- The Nirenberg problem

Which function K on the standard 2-sphere $\left(S^{2}, g\right)$ is the Gauss curvature of a metric conformally equivalent g ?

- $\operatorname{PDE}:\left(g_{u}=e^{u / 2} g\right)$

$$
-\Delta_{g} u+2=2 K e^{u}, \text { on } S^{2}
$$

\bullet On $\left(S^{n}, g\right), n \geq 3$, "scalar curvature" instead of "Gauss curvature".
-PDE: $\left(g_{u}=u^{\frac{4}{n-2}} g\right)$

$$
-\Delta_{g} u+\frac{(n-2) n}{4} u=\frac{n-2}{4(n-1)} K u^{\frac{n+2}{n-2}}, \quad u>0, \quad \text { on } S^{n} .
$$

- Necessary condition : $K>0$ somewhere.
- A crucial ingredient: Analysis of blow up solutions
- One point blow up: $n=2$, Alice Chang and Paul Yang; $n=3$, Bahri and Coron, Schoen and D. Zhang; $n \geq 4$, L., under flatness order $\beta \in(n-2, n)$.
- More than one point blow up occurs in dimension $n \geq 4$: L.
- Infinite energy blow up occurs in dimension $n \geq 7$: C.C. Chen and C.S. Lin
- σ_{k}-Nirenberg Problem
- " σ_{k}-curvature" instead of "scalar curvature".
- Schouten tensor: $((M, g)$ Riemannian manifold)

$$
A_{g}=(n-2)^{-1}\left(R i c_{g}-[2(n-1)]^{-1} R_{g} g\right)
$$

Let

$$
\lambda\left(A_{g}\right)=\left(\lambda_{1}, \cdots, \lambda_{n}\right)=\text { eigenvalues of } A_{g} .
$$

Then

$$
\lambda_{1}\left(A_{g}\right)+\cdots+\lambda_{n}\left(A_{g}\right)=\underset{=}{R_{g}} .
$$

- σ_{k}-curvature: $\sigma_{k}\left(A_{g}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \lambda_{i_{1}} \cdots \lambda_{i_{k}}$
- PDE:

$$
\sigma_{k}\left(A_{g_{u}}\right)=K, \quad \text { on } S^{n}
$$

- Many works on such type equations: Viaclovsky, Chang-Gursky-Yang,......

Let

$$
\mathcal{A}=\left\{K \in C^{2}\left(S^{4}\right) \mid K^{\prime>0,|\nabla K|+|\Delta K|>0 \text { on } S^{4}}\right\} .
$$

Fact: There exists a (unique) continuous integer-valued function (so locally constant)

Index: $\mathcal{A} \rightarrow Z$
satisfying, for any $K \in \mathcal{A}$ having only isolated critical points,

$$
\operatorname{Index}(K)=-1+\sum_{\bar{x} \in S^{4}, \nabla K(\bar{x})=0, \Delta K(\bar{x})<0} \underbrace{\text { index } \nabla K(\bar{x})}_{(-1)^{i}(\bar{x})} \cdot
$$

- Theorem A (Alice Chang, Zheng-Chao Han, Paul Yang, 2011): For any $K \in \mathcal{A}$ satisfying Index $(K) \neq 0$, there is at least one $C^{3}\left(S^{4}\right)$ solution to

$$
\sigma_{2}\left(A_{g_{u}}\right)=K, \quad \text { on } S^{4}
$$

For $n \geq 3$, Let

$$
\mathcal{A}=\left\{K \in C^{2}\left(S^{n}\right)\left|K>0,|\nabla K|+|\Delta K|>0 \text { on } S^{n}\right\} .\right.
$$

Fact: There exists a (unique) continuous integer-valued function (so locally constant)

Index: $\mathcal{A} \rightarrow Z$
satisfying, for any $K \in \mathcal{A}$ having only isolated critical points,

$$
\operatorname{Index}(K)=-1+(-1)^{n} \sum_{\bar{x} \in S^{n}, \nabla K(\bar{x})=0, \Delta K(\bar{x})<0} \text { index } \nabla K(\bar{x}) .
$$

- Theorem 1 (L., Lu Nguyen, Bo Wang, in preparation): Let $n \geq 3, \frac{n}{2} \leq k \leq n$. Then for any $K \in \mathcal{A}$ satisfying Index $(\widehat{K}) \neq 0$, there is at least one $C^{3}\left(S^{n}\right)$ solution to

$$
\sigma_{k}\left(A_{g_{u}}\right)=K, \quad \text { on } S^{n} .
$$

Moreover, the total degree of all solutions is equal to Index (K).

- A crucial ingredient: Analysis of blow up solutions
- For simplicity, assume $k=\frac{n}{2}$.
- Let $\left\{u_{i}\right\}$ be a sequence of solutions with

$$
u_{i}\left(P_{i}\right)=\max _{S^{n}} u_{i} \rightarrow \infty
$$

- By L. and Nguyen, 2014 JFA,

$$
\begin{aligned}
& u_{i}(x) \leq \operatorname{Cdist}\left(x, P_{i}\right)^{\frac{2-n}{2}}, \quad x \in S^{n} \backslash\left\{P_{i}\right\}, \\
& \lim _{i \rightarrow \infty} \int_{S^{n} \backslash B_{\delta}\left(P_{i}\right)} u_{i}^{\frac{2 n}{n-2}}=0, \quad \forall \delta>0, \\
& \max _{S^{n} \backslash B_{\delta}\left(P_{i}\right)} u_{i} \leq C(\delta) \min _{S^{n} \backslash B_{\delta}\left(P_{i}\right)} u_{i}, \quad \forall r>0,
\end{aligned}
$$

and for some $\delta_{i} \rightarrow 0^{+}$,

$$
\min _{\zeta n} u_{i} \leq u_{i}\left(P_{i}\right)^{-1+\delta_{i}}
$$

- We establish:

$$
\min _{S^{n}} u_{i} \leq C u_{i}\left(P_{i}\right)^{-1}
$$

- Let $\varphi_{i}: S^{n} \rightarrow S^{n}$ be an appropriate conformal diffeomorphism, (having $\pm P_{i}$ as fixed points), such that:
$\varphi_{i}\left(\partial B_{u_{i}\left(P_{i}\right)^{-\frac{2}{n-2}}}\left(P_{i}\right)\right)=$ the equator.
- $\tilde{u}_{i}:=\left(u_{i} \circ \varphi_{i}\right)\left|\operatorname{det} d \varphi_{i}\right|^{\frac{n-2}{2 n}}$ satisfies $\tilde{u}_{i}\left(P_{i}\right)=1$
$\left(1=u_{i}\left(P_{i}\right)\left|\operatorname{det} d \varphi_{i}\left(P_{i}\right)\right|^{\frac{n-2}{2 n}}\right)$.
So $\tilde{u}_{i}\left(-P_{i}\right) \sim u_{i}\left(-P_{i}\right)\left|\operatorname{det} d \varphi_{i}\left(-P_{i}\right)\right|^{\frac{n-2}{2 n}}=u_{i}\left(-P_{i}\right) u_{i}\left(P_{i}\right)$.
- We establish: For some $\delta>0$, sup $\tilde{u}_{i} \leq C(\delta)$.

$$
B_{\delta}\left(-P_{i}\right)
$$

- Two proofs for this.

- First proof makes use of the following

Proposition 1. Let $B_{1} \subset R^{n}, n \geq 3,0<u \in C_{\text {loc }}\left(R^{n} \backslash B_{1}\right)$ satisfies

$$
\lambda\left(A^{u}\right) \text { is not in } \bar{\Gamma}_{n / 2} \text { or } \sigma_{n / 2}\left(A^{u}\right)<1, \text { in } R^{n} \backslash B_{1},
$$

and

$$
\underset{|x| \rightarrow \infty}{\limsup }|x|^{n-2} u(x)<\infty
$$

Assume for $C_{0}>0, \alpha \in(0,1]$,

$$
u(x) \leq C_{0}|x|^{\frac{2-n}{2}(1+\alpha)} \text { in } R^{n} \backslash B_{1},
$$

then

$$
u(x) \leq C_{1}\left(n, C_{0}, \alpha\right)|x|^{2-n} \text { in } R^{n} \backslash B_{1} .
$$

Second Proof:
Proposition 2. Let $n \geq 3$ even, $k=n / 2$, there exists $\delta=\delta(n)>0$ such that if $0<u \in C^{2}\left(B_{2}\right)$ satisfies

$$
\sigma_{k}\left(\lambda\left(A^{u}\right)\right) \leq 1, \lambda\left(A^{u}\right) \in \Gamma_{k}, \quad \text { in } B_{2},
$$

and

$$
\int_{B_{2}} u^{\frac{2 n}{n-2}}<\delta .
$$

Then

$$
u \leq C(n) \text { in } B_{1} .
$$

- For $n=4, k=2$, the above was proved by Zheng-Chao Han 2004.
- For $k<\frac{n}{2}$, a stronger version in a punctured ball was proved by Maria del Mar Gonzalez 2006.

Part II σ_{k}-Loewner-Nirenberg problem

- The Loewner-Nirenberg problem

Theorem B. (Loewner, Nirenberg): Let $\Omega \subset R^{n}$ be bounded smooth open set, $n \geq 3$. There exists a unique smooth positive solution to

$$
\begin{gathered}
\Delta u=u^{\frac{n+2}{n-2}}, \text { in } \Omega \\
u(x) \rightarrow \infty \text { as } x \rightarrow \partial \Omega
\end{gathered}
$$

Moreover

$$
\lim _{x \rightarrow \partial \Omega} \operatorname{dist}(x, \partial \Omega)^{\frac{n-2}{2}} u(x)=c(n)>0
$$

σ_{k}

Theorem 2. (Gonzalez, L., Nguyen, 2018): Let $\Omega \subset R^{n}$ be bounded smooth open set, $n \geq 3,2 \leq k \leq n$. There exists a unique positive viscosity solution to

$$
\frac{\sigma_{k}\left(-A^{u}\right)=1, \text { in } \Omega,}{u(x) \rightarrow \infty \text { as } x \rightarrow \partial \Omega .}
$$

Moreover $u \in C_{\text {loc }}^{0,1}(\Omega)$, and

$$
\lim _{x \rightarrow \partial \Omega} \operatorname{dist}(x, \partial \Omega)^{\frac{n-2}{2}} u(x)=c(n, k)>0 .
$$

- Chang, Han, Yang, 2005 proved that the problem has no radially symmetric C^{2} solution on any annulus.
- A combination of the two results imply that there is no C^{2} solution on any annulus.

Theorem 3. (L. and Nguyen, 2020) Let $\Omega=\{a<|x|<b\}$ be an annulus, $n \geq 3,2 \leq k \leq n$. Then the solution of the σ_{k}-Loewner-Nirenberg problem is radially symmetric,
(i) u is C^{∞} in each of $\{a<|x|<\sqrt{a b}\}$ and $\{\sqrt{a b}<|x|<b\}$,
(ii) u is $C^{1, \frac{1}{k}}$, but not $C^{1, \gamma}$ with $\gamma>\frac{1}{k}$ in each of $\{a<|x|<\sqrt{a b}\}$ and $\{\sqrt{a b}<|x|<b\}$,
(iii) and $\partial_{r} u$ jumps across $\{|x|=\sqrt{a b}\}$.

Theorem 4. (L. and Nguyen, 2020) Let $\Omega \subset R^{n}$ be bounded open, $n \geq 3$. Then there is no positive $u \in C^{2}(\Omega)$ such that $\lambda\left(-A^{u}\right) \in \bar{\Gamma}_{2}$ in Ω and that ($\Omega, u^{\frac{4}{n-2}} g_{f l a t}$) admits a smooth minimal immersion $f: \Sigma^{n-1} \rightarrow \Omega$ for some smooth compact manifold Σ^{n-1}
Corollary Let Ω be an annulus in $R^{n}, n \geq 3$ Then there is no radially symmetric positive $u \in C^{2}(\Omega)$ such that $\lambda\left(-A^{u}\right) \in \bar{\Gamma}_{2}$ in Ω and $u(x) \rightarrow \infty$ as $x \rightarrow \partial \Omega$.

The proof is based on
Lemma Let $\Omega \subset R^{n}$ be open, $n \geq 3, \Sigma^{n-1} \subset \Omega$ smooth. If $u \in C^{2}(\Omega)$ satisfies $\lambda\left(-A^{u}\right) \in \bar{\Gamma}_{2}$ in Ω, then

Theorem 5 (L., Luc Nguyen, Jingang Xiong, in preparation). Let $\Omega \subset R^{n}$ be bounded, connected, smooth open, $n \geq 3$. Assume $\partial \Omega$ has more than one connected component. Then, for any $2 \leq k \leq n$, the σ_{k}-Loewner-Nirenberg problem has no $C^{2}(\Omega)$ solution.

Question: If $\Omega \subset \mathbb{R}^{n}$ strictly convex, bounded is the solution to the σ_{k}-Lower - Nirenberg problem always C^{2} ?

Part III Fully nonlinear equations invariant under Möbius transformations in two dimension

- Define

$$
\begin{aligned}
& \iint A^{u}:=-e^{-u} \nabla^{2} u+\frac{1}{2} e^{-u} d u \otimes d u-\frac{1}{4} e^{-u}|\nabla u|^{2} I . \\
& 1
\end{aligned}
$$

For a function u, and for a Möbius transformation ψ, denote:

$$
u_{\psi}:=u \circ \psi+\ln \left|J_{\psi}\right| .
$$

- $H \in C^{0}\left(R^{2} \times R \times R^{2} \times \mathcal{S}^{2 \times 2}\right)$ is invariant under Möbius
 transformations, ie.,

$$
H\left(\cdot, u_{\psi}, \nabla u_{\psi}, \nabla^{2} u_{\psi}\right)=H\left(\cdot, u, \nabla u, \nabla^{2} u\right) \circ \psi \text { for all } u \text { and } \psi \text {, }
$$

if and only if

$$
H\left(\cdot, u, \nabla u, \nabla^{2} u\right) \equiv F\left(A^{u}\right)
$$

for some $F \in C^{0}\left(\mathcal{S}^{2 \times 2}\right)$ which is invariant under orthogonal conjugation.

$$
F(M)=f(\lambda(M))
$$

Let Γ be open convex symmetric cone in R^{2} with vertex at the origin satisfying $\Gamma_{2} \subset \Gamma \subsetneq \Gamma_{1}$, where
$\Gamma_{1}:=\left\{\lambda_{1}+\lambda_{2}>0\right\}, \Gamma_{2}=\left\{\lambda_{1}, \lambda_{2}>0\right\}$.
Let $f \in C^{1}(\Gamma)$ satisfy $\partial_{\lambda_{i}} f>0$ in $\Gamma, j=1,2$. Theorem 6 (L., Han Lu, Siyuan Lu).
Let (f, Γ) be as above. Assume $u \in C^{2}\left(R^{2}\right)$ satisfies

$$
f\left(\lambda\left(A^{\text {U }}\right)=1, \quad \text { in } R^{2},\right.
$$

where $\lambda\left(A^{u}\right)$ denotes the eigenvalues of A^{u}. Then

$$
u(x)=2 \ln \frac{8 a}{8\left|x-x_{0}\right|^{2}+b},
$$

for some $x_{0} \in R^{2}$ and some positive constants a and b satisfying $\left(b /\left(2 a^{2}\right), b /\left(2 a^{2}\right)\right) \in \Gamma$ and $f\left(b /\left(2 a^{2}\right), b /\left(2 a^{2}\right)\right)=1$.
No assumption on a at wo needed

- C. Li and W. Chen 1991 proved: Let $u \in C^{2}\left(R^{2}\right)$ satisfy

$$
-\Delta u=e^{u}, \quad \text { in } R^{2},
$$

and

$$
\int_{R^{2}} e^{u}<\infty
$$

Then

$$
u(x)=2 \ln \frac{8 a}{8\left|x-x_{0}\right|^{2}+a^{2}}
$$

for some $x_{0} \in R^{2}$ and some positive constant a.

- This corresponds to $\Gamma=\Gamma_{1}$ and $f\left(\lambda_{1}, \lambda_{2}\right)=\lambda_{1}+\lambda_{2}$.
- In this case, condition $\int_{R^{2}} e^{u}<\infty$ can not be dropped.

THANK YOU!

