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e Part |. ox-Nirenberg Problem
e Part |Il. ok-Loewner-Nirenberg problem

e Part Ill. Fully nonlinear equations invariant under Mobius
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e The Nirenberg problem

Which function._i_{ on the standard 2-sphere (52, g) is the Gauss

. . >
curvature of a metric conformally equivalent g?
w

e PDE: (gi: e“/z‘g)

—Agu+2=2Ke" on S° ”

eOn (5", g), n > 3, “scalar curvature” instead of “Gauss
curvature”.

ePDE: (g, = uﬁg)
& ~—

(n—2)n n—2 42 n
—Agu+Tu:mKun—2, u>0, onS".

e Necessary condition : K > 0 somewhere.



e A crucial ingredient: Analysis of blow up solutions

e One point blow up: n = 2, Alice Chang and Paul Yang; n = 3,
Bahri and Coron, Schoen and D. Zhang; n > 4, L., under flatness
order 8 € (n— 2, n).

e More than one point blow up occurs in dimension n > 4: L.

e Infinite energy blow up occurs in dimension n > 7: C.C. Chen
and C.S. Lin



e 0,-Nirenberg Problem
e “0,-curvature” instead of "scalar curvature”.
e Schouten tensor: ( (M, g) Riemannian manifold)

="

Ag = (n— 2)_1(R"Cg —[2(n — 1)]_1Rgg)a

: = S
Let

MAg) = (A1, -+, An) = eigenvalues of Ag.

#
Then

AM(Ag) + -+ An(Ag) = Re.
=
e oy -curvature: oy(Ag) = Zl§i1<---<ik§n LYRERP.Y
e PDE: 50
Ok (Agu) — K, onS". 'V

Vs

e Many works on such type equations: Viaclovsky,
Chang-Gursky-Yang,......



Let

A={K e C?(sY |I?(>O,|VK\+\AK] >00nﬁ}.

Fact: There exists a (unique) continuous integer-valued function

(so locally constant) Vk' =0
Index: A — Z

satisfying, for anyE( € A having only isolated critical points,

Index(K) = —1 + Z mdeXVK
%S4 VK (3)=0,AK(X)<0 2 )1.&)

e Theorem A (Alice Chang, Zheng-Chao Han, Paul Yang, 2011):

For any K € A satisfying Index(K) # 0, there is at least one oy 7 s~
C3(S5*) solution to V kee)

02 (Ag,) = K, on S*.



For n > 3, Let
[ Y

A= {K € C(S") | K > 0.|VK| + |AK| > 0 on 5"}!

Fact: There exists a (unique) continuous integer-valued function
(so locally constant)

Index : A — 7

satisfying, for an;4K € A having only isolated critical points)

.y

Index(K) = —1 + (—1)" > indexv k().
— %€57 VK(X)=0,AK(X)<0



e Theorem 1 (L., Luc Nguyen, Bo Wang, in preparation):
Let n >3, 2 < k < n. Then for any K € A satisfying
Index(K) # 0, there is at least one C3(S") solution to

o= ]

ok (Ag,) =K, onS".

Moreover, the total degree of all solutions is equal to Index(K).

s < &
cn



e A crucial ingredient: Analysis of blow up solutions
e For simplicity, assume k = 3.
e Let {u;} be a sequence of solutions with ”

ui(P;) = max uj — oo.

e By L. and Nguyen, 2014 JFA,

2—n

ui(x) < Cdist(x, P;) 2, x€ S"\ {P;},

2n
Iim/ u'? =0, Vé>0. é
S™\Bs(P;)

—00

max u; < C(0) min wu;, Vr>0,
S"™\Bs(Pi) 5"\ Bs(P;)

and for some §; — 0™,

min u; < Ui(Pi)_1+5i.
in—-— —

e \We establish:

nginn up < Cu,-(P,-)_l.



o Let ; : S” —_S" be an appropriate conformal diffeomorphism,

(having +P; as fixed points), such that: - F(.‘
\
, )) = tor. o
gp,((‘)BUi(Pi)_n_EZ(P,)) thne_zequa or F‘;
® il = (u,- O (p,')l det dg&i‘W satisfies ﬂ,‘(P,') =1 [

n—2

(]. = u,-(P,-)| det dcp,'(P,')ITn—).
So fl;(—Pi) ~ U,'(—P,')‘ det (J'QO,'(—:D,')‘H2;I72 = u,-(—P,-)u,-(Pi)- «

e We establish: For some § > 0,/ sup &; < C(9).
Bs(—Pi)



e Two proofs for this.

e First proof makes use of the following
Proposition 1. Let By C R", n>3,0< u € Co(R"\ By)
satisfies

A(AY) is not in F,,/2 or op2(AY) <1, in R"\ By,

and

lim sup |[x|"?u(x) < oco.
|x|—00

Assume for Cop > 0, a € (0, 1],

2—

2n(1—|—04) in Rn\Bl7

u(x) < Colx|

then
u(x) < Ci(n, Co,a)|x]|>™" in R™\ Bj.



Second Proof:
Proposition 2. Let n > 3 even, k = n/2, there exists 6 = §(n) > 0
such that if 0 < u € C?(By) satisfies

O'k()\(Au)) < 1, )\(Au) c Fk, In BQ,

2n
/ un—2 < 9.
B,

u< C(n) in By.

and

Then

e For n =4, k = 2, the above was proved by Zheng-Chao Han
2004.

e For k < 3, a stronger version in a punctured ball was proved by
Maria del Mar Gonzalez 2006.



Part Il ox-Loewner-Nirenberg problem

e The Loewner-Nirenberg problem
Theorem B. (Loewner, Nirenberg): Let Q C R" be bounded
smooth open set, n > 3. There exists a unique smooth positive

solution to
n+2 {

Au=ur2,inQ, *

u(x) — oo as x — 0N.
_

Moreover
n—2

lim dist(x,0Q) 2 u(x) = c(n) >

x—0Q - 0.
Ox




Theorem 2. (Gonzalez, L., Nguyen, 2018): Let Q C R" be
bounded smooth open set, n >3, 2 < k < n. There exists a

unique positive viscosity solution to
" 6,
or(—AY) =1, in Q, ’l‘
e
u(x) — oo as x — 0N. AU=W

0,1
Moreover u € C2-(2), and

lim_dist(x, Q)2 u(x) = c(n, k) > 0.
x—0Q

e

e Chang, Han, Yang, 2005 proved that the problem has no radially
symmetric C2 solution on any annulus.

—

e A combination of the two results imply that there is no C?
C—

solution on any annulus. —

—




Theorem 3. (L. and Nguyen, 2020) Let Q2 = {a < |x| < b} be an
annulus, n > 3,2 < k < n. Then the solution of the

ok-Loewner-Nirenberg problem is radially symmetric,
—

(i) wis C* in each of {a < |x| < Vab} and {Vab < |x| < b},
(ii) uis CL% but not C17 with v > £ in each of {a < |x| < Vab}

and {vab < |x| < b},
(i) and O,u jumps across {|x| = v/ab}.




Theorem 4. (L. and Nguyen, 2020) Let 2 C R" be bounded open,
n > 3. Then there is no positive u € C?(Q) such that A\(—AY) €T»

4
in Q and that (Q, un—2gf,¢) admits a smooth minimal immersion
f: Y"1 5 Q for some smooth compact manifold ¥"~!

Corollary Let Q be an annulus in R”, n > 3 Then there is no
radially symmetric positive u € C?(§2) such that A(—AY) € [ in Q
and u(x) — oo as x — 0NQ2.

The proof is based on
Lemma Let Q C R" be open, n> 3, Y"1 © Q smooth. If
u € C%(Q) satisfies A\(—AY) € T in Q, then

_
(n—2)u

n—?2 5 ne2 N —2 ’
n—2_—H —_

TP L

= e

Vsul>>0onX.

———




Theorem 5 (L., Luc Nguyen, Jingang Xiong, in preparation). Let
{2 C R" be bounded, connected, smooth open, n > 3. Assume 0f2

_
has more than one connected component. Then, for any
2 < k < n, the o-Loewner-Nirenberg problem has no C?(Q)

solution.

Qe
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Part Il Fully nonlinear equations invariant under Mobius
transformations in two dimension ="

M I

e Define

) 1 1
’I AY = —e UV2u + §e_“du® du — Ze_”|Vu|2I. ”

For a function u, and for a Mobius transformation v, denote:

a Ly —UO¢+|"|J¢| jw&ra-w

4 Y

e He CO%(R?2 x R x R? x 82X2) is invariant under Mobius
transformations, I.e.,

H(-, U¢;VU¢3V2U¢) = H(., u,vu,vzu) o for all u andi.7

if and only if
H(-,u,Vu,V%u) = F(AY)

0/ c2%x?2 . .. s
for some F € C°(S<%¢) which is invariant under orthogonal

conjugation. '2 (["1) ~ & [ ?\(H)—?

I 4




Let [ be open convex symmetric cone in R with vertex at the
origin satisfying I'o C I C _I'1, where

[ := {)\1 + Ao > 0}, [> = {)\1,)\2 > O}.
Let f € C1(T") satisfy 9),f > 0in I, =1,2.
Theorem 6 ( L., Han Lu, Siyuan Lu).

where A\(AY) denotes the eigenvalues of AY. Then

8a

=21

for some xg € R? and some positive constants a and b satisfying
(b/(2a%), b/(2a%)) € T and f(b/(2a%), b/(2a%)) =

A/O MSUA"P.LO'I—, ow k&t WO ’Y)Elﬂ(cw{



e C. Li and W. Chen 1991 proved: Let u € C?(R?) satisfy

—Au=-¢e", inR? ?’

/ e’ < oo.
R2

8a
8|x — xp|? + a*’

and

Then

u(x) =2In

for some xg € R? and some positive constant a.

e This corresponds to ' =11 and f(A1, A2) = A1 + Ao.
e

e In this case, condition fR2 e < oo can not be dropped.

L -

—" o




THANK YOU!



